

REMOTE CONTROL
MISSION 8

TABLE OF CONTENTS

• REMOTE CONTROL .. 1

Your Role: Assistive Technology Engineer .. 1

Your Task: Control the Robot from Afar .. 1

Considerations .. 1

Materials .. 1

• LEARN: RADIO .. 2

Programming the Hand-Held Controller ... 2

The GiggleBot as a Remote Controlled Robot 4

First Remote Control Run ... 5

Reloading a Program ... 6

Using Movement in the Remote Controller .. 7

Responding to Movement on the GiggleBot 8

• PLAN IT OUT... 9

Micro:bit Holder .. 9

Behavior .. 9

• ARE YOU STUCK?? ... 10

Remote Controller Program: .. 10

GiggleBot Program: .. 12

• TRY IT OUT .. 14

Extension .. 14

M I S S I O N 8 : R E M O T E C O N T R O L P A G E 1

© 2 0 1 9 D E X T E R I N D U S T R I E S

 REMOTE CONTROL

YOUR ROLE: ASSISTIVE TECHNOLOGY ENGINEER

 Assistive technology (AT) is any item, piece of equipment, software program, or product
system that is used to increase, maintain, or improve the functional capabilities of persons
with disabilities.

YOUR TASK: CONTROL THE ROBOT FROM AFAR

Program a remote controller for the GiggleBot using a second micro:bit so that you do not need a tethered

controller (like the one you made in mission 3). Then, build a holder, glove, or grip for the micro:bit controller

for the GiggleBot so that someone with limited fine motor control can drive the GiggleBot around.

 Fine motor skills - the coordination of small muscles movements in the hands and fingers,
with the eyes.

CONSIDERATIONS

 How can you control the GiggleBot with a second micro:bit?

 What inputs can be used on the extra micro:bit to control the GiggleBot?

MATERIALS

 GiggleBot and good batteries

 micro:bit and provided cable

 Laptop / computer

 Additional micro:bit (not the one in the GiggleBot) and its battery pack

 Craft supplies to build a holder for the additional micro:bit to make it wearable (Ex. construction

paper, pipe cleaners, rubber bands, a glove, string, or tape)

M I S S I O N 8 : L E A R N : R A D I O P A G E 2

© 2 0 1 9 D E X T E R I N D U S T R I E S

 LEARN: RADIO

This mission is going to be a bit different from the others

because we need to program the GiggleBot as well as the

additional micro:bit that we will use as a controller.

PROGRAMMING THE HAND-HELD CONTROLLER

SETTING THE RADIO GROUP
 Move an on start block to the workspace. Under Radio, find the

radio set group __ block and connect it to the on start block.

This block sets the group ID for radio communication. The micro:bit

can only listen to one group at a time. Later, we will set the group ID

for the GiggleBot to the same number so that the two micro:bits can communicate with one

another.

 Note: The group number will need to be different for each micro:bit / GiggleBot pair. If you
are in a classroom with multiple GiggleBots, each group needs to be assigned a different
group number.

SENDING MESSAGES
Now, let’s program the A and B buttons to send a message to the GiggleBot to get it to do

something.

 Move an on button A pressed and an on button B pressed block to your workspace.

M I S S I O N 8 : L E A R N : R A D I O P A G E 3

© 2 0 1 9 D E X T E R I N D U S T R I E S

Determine what you want the GiggleBot to do when those buttons are pressed and program it.

 Do you want the robot to spin around when the A button is pressed and stop when the B button

is pressed?

 Do you want the GiggleBot to do a series of movements when the A button is pressed and turn

on lights when the B button is pressed?

It is up to you!

We are not going to program those movements yet, but assign each a

number using the radio send number __ block. For this example we are

also going to display an icon on the additional micro:bit to represent the GiggleBot’s movement.

An example is shown here:

 Be sure that you name this program before you save it. Since we are writing two programs, it

is important that you are able to easily find this program later if you want to modify or add

onto it.

 Download and transfer your program to your additional micro:bit. This will be used as the

controller for the GiggleBot.

When this micro:bit is turned on and the buttons are pressed, it will not do anything YET. Now, we

need to program the GiggleBot so the additional micro:bit has something to control.

M I S S I O N 8 : L E A R N : R A D I O P A G E 4

© 2 0 1 9 D E X T E R I N D U S T R I E S

THE GIGGLEBOT AS A REMOTE CONTROLLED ROBOT

Now it’s time to move to programming the GiggleBot. Set aisde

the other micro:bit for the moment.

Clear your workspace by either moving all of your blocks to the trashcan or

by clicking on the Projects icon and then clicking on New Project . Now you

can write a new program for the GiggleBot.

This next program will start out in a similar fashion to the one for the hand-

held remote. We need to set the radio group to the same group as the

remote. Otherwise, someone else may be able to control your GiggleBot.

Next, we will use a series of if __ then __ statements to tell the GiggleBot what to do when each

number is received from the micro:bit remote.

 Find a on radio received receivedNumber block under

Radio and move it to your workspace.

 Build a if __ then __ else if __ then __ block by using

the + sign and start filling it with comparison blocks like

shown here. See mission 6 for details.

M I S S I O N 8 : L E A R N : R A D I O P A G E 5

© 2 0 1 9 D E X T E R I N D U S T R I E S

 The radio message the GiggleBot will receives will store a number

in a variable. Just like in algebra, variables represent a number. In

this case it will represent whatever number the additional micro:bit

sends. This receivedNumber block can be found under Variables. It

gets created for you automatically as soon as you bring a

on radio received receivedNumber block on the workspace.

Build the conditional statements using the comparison blocks and the receivedNumber block so it

looks like the code below.

 Name this program so it gets saved.

 Download and transfer this file to your GiggleBot micro:bit.

FIRST REMOTE CONTROL RUN

Now, you are ready to control your GiggleBot with another micro:bit!

Turn on both the GiggleBot and the hand-held micro:bit. If you used the example above, when you

press the A button on the hand-held micro:bit, the GiggleBot will display a rainbow smile and when

you press the B button on the hand-held micro:bit, the GiggleBot will spin around.

M I S S I O N 8 : L E A R N : R A D I O P A G E 6

© 2 0 1 9 D E X T E R I N D U S T R I E S

RELOADING A PROGRAM

We will need to go back to the programs we worked on so far.

There are a couple of ways to load a saved program, go back to https://makecode.microbit.org/.

You can import a program by clicking on the Import button (1). Then, upload the file from your

computer or copy and paste the link for the program.

If your program was made recently, you may be able to just click on the old program (2). Previous

programs are listed out under My Projects.

https://makecode.microbit.org/

M I S S I O N 8 : L E A R N : R A D I O P A G E 7

© 2 0 1 9 D E X T E R I N D U S T R I E S

USING MOVEMENT IN THE REMOTE CONTROLLER

Let’s modify these programs to add in more actions. Load or

remake the program for the hand-held remote you just created.

Set aside the GiggleBot and get the second micro:bit instead.

Instead of just using the buttons on the hand-held micro:bit to

control the GiggleBot, we can also use the movement of the

micro:bit. Think back to mission 2 where we used the position of the GiggleBot to change the lights

displayed on the GiggleBot. This program will be similar, however the orientation of the hand-held

micro:bit will tell the GiggleBot what to do.

 Add an on logo down block in order to send a third command.

 Download and transfer this program to your additional micro:bit.

M I S S I O N 8 : L E A R N : R A D I O P A G E 8

© 2 0 1 9 D E X T E R I N D U S T R I E S

RESPONDING TO MOVEMENT ON THE GIGGLEBOT

Next, grab your GiggleBot and reload your program for it so that

we can make some modifications to it. We need to add an

else if __ then __ statement for the new movement on the

controller. We can also make it more flashy by adding more

movement and light commands.

Download and transfer this program to the GiggleBot.

TEST IT OUT!
 Can you make the GiggleBot move forward by moving the additional micro:bit so that the logo

is down?

 How do you get the GiggleBot to stop?

M I S S I O N 8 : P L A N I T O U T P A G E 9

© 2 0 1 9 D E X T E R I N D U S T R I E S

 PLAN IT OUT

MICRO:BIT HOLDER

Sketch out a design for the micro:bit holder so that you can control the GiggleBot without holding

onto the remote with your hand and fingers. Remember: you will need to have a place for the

micro:bit and the battery pack.

 What if you are not able to grip onto something with your fingers? Could you mount the

additional micro:bit on a wristband or glove? Could you make an oversized handle for it?

 What if you cannot lift your arms or move your hands? Could you mount the additional

micro:bit onto a headband so that the movement of your head would control the GiggleBot?

 What if you could only use your legs or feet, but not your hands and arms? Could you mount

the additional micro:bit onto a shoe or sock? Where do you want it to be located so that it is

easy to use?

BEHAVIOR

 What movements or actions of the GiggleBot do you want to control?

 Do you want to control the lights? Movement? Both?

 What movements of the extra micro:bit will trigger each GiggleBot motion or action?

Jot down your ideas before you start building and programming.

BUILD YOUR MICRO:BIT HOLDER

Using craft materials or recyclables build a holder for the extra micro:bit so that you do not need

to hold it in your hand. Be sure that the micro:bit and its battery pack are secure.

BUILD YOUR PROGRAM

Use what you learned earlier in the mission to program your GiggleBot to be controlled by your

extra micro:bit. Remember: you will need to program the GiggleBot as well as the additional

micro:bit. These are two separate programs. One program is transferred to the GiggleBot and the

other program is transferred to your additional micro:bit.

M I S S I O N 8 : A R E Y O U S T U C K ? ? P A G E 1 0

© 2 0 1 9 D E X T E R I N D U S T R I E S

 ARE YOU STUCK??

Let’s build a program together!

We are going to make a remote that you can use to drive around the GiggleBot just by moving

another micro:bit. It will be like having super powers!

The plan:

 Screen up - stop

 Logo up - drive backward

 Logo down- drive forward

 Tilt left - spin left

 Tilt right - spin right

We need to write two programs, just like in the Learn section. One program is for the extra micro:bit

and the other is for the GiggleBot.

REMOTE CONTROLLER PROGRAM:

We will begin this program by setting the group and the radio

transmission power. Remember, the group needs to match the

group you set for the GiggleBot. If there are multiple GiggleBots in

the room ensure that each one has a different group number,

unless you want to control all of the robots at once!

M I S S I O N 8 : A R E Y O U S T U C K ? ? P A G E 1 1

© 2 0 1 9 D E X T E R I N D U S T R I E S

 Move in an event handler for each movement of the additional micro:bit. These blocks can be

found under Input.

When each movement of the additional micro:bit occurs we will program it to send a number via

the radio to the GiggleBot to tell it what to do. Using show icon

blocks or show arrow blocks, program the remote-controller

micro:bit to display an image that represents the GiggleBot’s

movement. The show arrow blocks can be found under

Basic → more.

 Download and transfer the program to your additional micro:bit.

M I S S I O N 8 : A R E Y O U S T U C K ? ? P A G E 1 2

© 2 0 1 9 D E X T E R I N D U S T R I E S

GIGGLEBOT PROGRAM:

Clear your workspace so that we can program the GiggleBot. Also

fetch the GiggleBot itself.

Start this program as we did in the Learn section. First, set the

radio group to the same group as the

remote. Remember, the micro:bits will only be able to communicate with

one another if the radio is set to the same group.

Since we want the GiggleBot to move

based on five different movements of the

additional micro:bit, we will need to have

five if statements. After each if __ then __

statement (or else if __ then __), we will

test for the number that will be sent by the

micro:bit remote controller using a the

receivedNumber variable block. Our

on radio received receivedNumber will

now look like the following:

Each movement of the GiggleBot needs to match what we wrote in the remote controller program.

For example, in the remote controller program:

1 We programmed the micro:bit to send the number 1 to tell the GiggleBot to stop.

2 We programmed the micro:bit to send the number 2 to tell the GiggleBot to drive backward.

3 We programmed the micro:bit to send the number 3 to tell the GiggleBot to drive forward.

If these do not match up, your controller will not work as you planned.

Add the appropriate movement blocks to each of the then __ statements.

M I S S I O N 8 : A R E Y O U S T U C K ? ? P A G E 1 3

© 2 0 1 9 D E X T E R I N D U S T R I E S

Here is what the whole GiggleBot program looks like:

 Download and transfer the program to your GiggleBot.

 Turn on the GiggleBot.

 Power the additional micro:bit.

 Test out your programs.

M I S S I O N 8 : T R Y I T O U T P A G E 1 4

© 2 0 1 9 D E X T E R I N D U S T R I E S

 TRY IT OUT

 Were you able to control the GiggleBot exactly as you had anticipated?

 Do you see any areas that you would like to modify or improve upon?

In engineering, we:

 try a solution,

 think about what needs to change,

 and iterate.

As you modify and revise your program, save each new program with a version number – you

never know when you might want to take another look at an older version (for example: Remote_V1

where “V” stands for version).

EXTENSION

READY-MADE BLOCKS.
There are GiggleBot-specific remote control blocks under Remote.

Program the GiggleBot to receive signals from the

additional micro:bit using the premade blocks. You only

need two blocks!! Download and transfer this program

to your GiggleBot.

Next, program the additional micro:bit to act as a remote

for the GiggleBot. Download and transfer this program

to the additional micro:bit.

 Turn on both the GiggleBot and the additional micro:bit.

 Use the movement of the additional micro:bit to control the GiggleBot.

How does this differ from the programs you made previously to control the GiggleBot remotely?

What can you do now that you could not do before?

M I S S I O N 8 : T R Y I T O U T P A G E 1 5

© 2 0 1 9 D E X T E R I N D U S T R I E S

RADIO MESSAGES WITH WORDS
It is possible to pass word messages instead of being limited to numbers as per the following code.

SENDING FROM THE REMOTE CONTROL :

 What advantages do you see with using strings intead of

numbers?

 What disadvantages can you think of?

RECEIVING ON THE GIGGLEBOT:

Notice the quotes around the code words. To get

those quotes you will need to use a block from

Advanced > Text.

It is usually easier for a computer to deal with numbers and for a human to deal with words.

M I S S I O N 8 : T R Y I T O U T P A G E 1 6

© 2 0 1 9 D E X T E R I N D U S T R I E S

Copyright Dexter Industries 2019. All rights reserved. Reproduction and distribution of

the Mission without written permission of Dexter Industries is prohibited. GiggleBot is a

registered Trademark of Dexter Industries.

Contact dextered@dexterindustries.com for permissions and questions.

mailto:dextered@dexterindustries.com

