

SCAREDY CAT
MISSION 4

TABLE OF CONTENTS

• SCAREDY CAT ... 1

Your Role: Zoologist .. 1
Your Task: Investigate a New Creature .. 1
Considerations .. 1
Materials .. 1

• LEARN: CONNECT THE DISTANCE SENSOR................................. 2

• LEARN: WHILE LOOP .. 3

• LEARN: USE THE DISTANCE SENSOR ... 4

• LEARN: WHAT IF ... 7

• PLAN IT OUT... 9

Build Your Creature .. 9
Build Your Program .. 9

• ARE YOU STUCK?? ... 10

• TRY IT OUT .. 12

Iterate .. 12
Extension .. 13

M I S S I O N 4 : S C A R E D Y C A T P A G E 1

© 2 0 1 9 D E X T E R I N D U S T R I E S

 SCAREDY CAT

YOUR ROLE: ZOOLOGIST

 A zoologist is a scientist who studies animal behaviors.

YOUR TASK: INVESTIGATE A NEW CREATURE

You have just discovered a new species of animal and are investigating its behaviors. This

creature reacts to getting close to objects.

CONSIDERATIONS

 Will the animal be afraid of obstacles and run away from them? Or, will the animal look for

obstacles and then “attack” them?

 What will the animal look like?

 Will the animal mimic behaviors of other animals you know about?

MATERIALS

 GiggleBot and good batteries

 micro:bit and provided cable

 Laptop / computer

 Distance sensor and sensor mount

 Optional: craft supplies to transform the GiggleBot into an animal such as construction paper,

pipe cleaners, or cardboard.

M I S S I O N 4 : L E A R N : C O N N E C T T H E D I S T A N C E S E N S O R P A G E 2

© 2 0 1 9 D E X T E R I N D U S T R I E S

 LEARN: CONNECT THE DISTANCE SENSOR

Connect the distance sensor to either one of the ports on the front of the GiggleBot. The ports are

located right underneath the LED eyes.

 Attach the distance sensor to the GiggleBot using the blue sensor mount.

The distance sensor works by sending out a pulse of light in front of it. It then measures the time

it takes for the light to reflect off of something and return to the sensor to measure how far it is

from an object. Using this sensor your GiggleBot can detect obstacles and react to them.

M I S S I O N 4 : L E A R N : W H I L E L O O P P A G E 3

© 2 0 1 9 D E X T E R I N D U S T R I E S

 LEARN: WHILE LOOP
Before coding our project, let’s take a small detour and have a look

at how to do code that repeats itself. We’ll be coding a beating heart

as our example. All these blocks are found under Basic.

This code will display a beating heart on the micro:bit screen. It will start as soon as the micro:bit

is turned on, and will beat until the micro:bit has no power. Transfer this code to your GiggleBot to

see it in action.

WHAT IF WE WANT TO CONTROL WHEN THE HEARTBEAT STARTS?
Code this sequence and transfer it to your micro:bit. Now the beating heart

starts when button A is pressed. The “while true do” loop (found under

Loops) is almost like a forever loop, but we get to control its starting point.

Does the heart stop beating when you let go of button A? No, it keeps on

beating and it will beat forever or until the micro:bit loses power.

WHAT IF WE WANT TO CONTROL WHEN THE HEARTBEAT STOPS?
We can change the true part of the while loop to any

condition we want. If that condition ever turns out to be

false, the while loop will exit! The condition

“obstacle is closer than 100 mm” is found in the GiggleBot

category, near the bottom. You may have to scroll down.

 Transfer this sequence to your micro:bit and try it.
 Put your hand really really close to the distance sensor, almost covering it, and press button
A. The beating heart will start when you press the button.

 Remove your hand and the beating heart will stop.
 If you want to restart the beating heart, it’s tempting to cover the distance sensor again but
that’s not the proper starting condition. Can you figure out what will start the heart again?
What happens if you press button A but do not have your hand in front of the distance
sensor? (the heart never beats because the condition is false)

M I S S I O N 4 : L E A R N : U S E T H E D I S T A N C E S E N S O R P A G E 4

© 2 0 1 9 D E X T E R I N D U S T R I E S

 LEARN: USE THE DISTANCE SENSOR

Let’s begin by moving an block on Button A pressed (found

under Input) to the workspace. We used this block in Mission

2: Light Show to initiate all or part of a program to control the

lights on the GiggleBot. This time we will use it to start a

different type of program.

Place a block while true do (found under Loops) inside of the

on Button A pressed block .

Instead of waiting until the GiggleBot is close to something to react, we are going to tell it to

drive forward while it is a safe distance away from an obstacle.

Place an obstacle is closer than 100 mm block (found under

GiggleBot) in the while… do… block where it says true. That

means that the GiggleBot will do whatever is connected to the

do portion of the block while the condition is true.

Connect a block drive forward to the do portion of the

while… do… block. This is the action that the GiggleBot will do

inside the while block, over and over and over, and over.

M I S S I O N 4 : L E A R N : U S E T H E D I S T A N C E S E N S O R P A G E 5

© 2 0 1 9 D E X T E R I N D U S T R I E S

If we ran this program, then the GiggleBot

would drive forward when the distance sensor

reads a value less than 100 mm (10 cm). This

is the opposite of what we want it to do!!!

Use the drop-down menu to change closer to

farther.

Last, we need to tell the GiggleBot what to do once the condition is no longer met. In

this example we are going to tell the robot to stop so that it does not run into the

object. Connect a stop block to the outside of the while-do block. We do not want the

GiggleBot to stop if an object is a safe distance away, only if it gets too close.

HOW CLOSE IS TOO CLOSE?
How close do you think the GiggleBot should get to an object before stopping? Change the 100 to

your desired value.

 ** This measurement is in millimeters (mm). 10 millimeters = 1 centimeter **

Create a name for your program and save it. Then, transfer the file to your GiggleBot and test it

out.

M I S S I O N 4 : L E A R N : U S E T H E D I S T A N C E S E N S O R P A G E 6

© 2 0 1 9 D E X T E R I N D U S T R I E S

LOOP CODE

This is what happens when that sequence of code gets run. The condition

obstacle is closer than 100 mm gets tested over and over again. As the command drive forward

is quick to execute, the loop is done extremely fast.

 CAUTION: If the body of the while loop takes a long time to execute (for example, cycling a
rainbow for many seconds) then the condition gets tested only after it finished executing.
It does NOT get tested continuously. The robot can miss obstacles that way.

ANIMAL REACTION
 What else could you add to the program?

 Do you want to turn on LEDs when an object gets close?

 Do you want it to turn around?

 Create a couple more versions of this program by adding in more movements and/or LEDs.

M I S S I O N 4 : L E A R N : W H A T I F P A G E 7

© 2 0 1 9 D E X T E R I N D U S T R I E S

 LEARN: WHAT IF
Now, we are going to use a new type of block to program the GiggleBot to do more than just stop

if it comes close to an object. It will react in some way. Maybe it will turn and run away. Maybe it

will turn on different color LEDs. Maybe it will rapidly spin in a circle. It is up to you to decide how

your GiggleBot will react to an object.

 Find the “if … then …” blocks under Logic. These blocks tells the

robot to do an action if a value is true. Notice there is an “if … then …”

block and an “if … then … else …” block.

 If you click on the + sign you can modify these blocks to add either

an else … or an else if … then statement.

Choose one of the two following options:

1 Move a forever block into your workspace and

place an if then … else … block inside

2 Use a on button A pressed with a while true

combination instead if you prefer to control when

the program starts.

Next, we need to determine what values we want the

GiggleBot to be looking for. Since we are using the

distance sensor, think about how close you want the

robot to get to an object before reacting.

Do you want it to stop when it is 100 mm away? 50 mm

away? One way to do this is to use a block

“obstacle is closer than __ mm” again. Connect this

M I S S I O N 4 : L E A R N : W H A T I F P A G E 8

© 2 0 1 9 D E X T E R I N D U S T R I E S

block to the “if then …” portion of the “if then … else …” block where it says true.

You can use the drop down menu on the block to change “closer” to “farther” depending on what

you want the GiggleBot to do. Change the “100” value to tell the GiggleBot when to react.

 ** The distance is measured in millimeters (mm). 10 mm = 1 centimeter. **

 In this example, the value was changed to

50 mm. This means the GiggleBot will do an

action when the distance sensor reads a value

less than 50 mm, in other words the GiggleBot

will react if an obstacle is within 50 mm of the

distance sensor.

 Inside the if then… block opening, add

blocks to tell the GiggleBot what to do if it gets

closer than ____ mm to an obstacle. In this

example, the GiggleBot will display a sad face,

drive backwards quickly, and then turn around

when an obstacle is detected that is closer than

50 mm.

 Inside the else … block opening, add

blocks to tell the GiggleBot what to do if there

isn’t an obstacle. In this example, it will drive

forwards with a happy face if there is no

obstacle.

When you are finished writing your program, name your program and save it. You can transfer it

to your GiggleBot to try it out.

M I S S I O N 4 : P L A N I T O U T P A G E 9

© 2 0 1 9 D E X T E R I N D U S T R I E S

 PLAN IT OUT

Consider the following questions as you plan out your creature. Jot down your thoughts on a

piece of paper and sketch out what your creature will look like.

 What is your creature going to look like?

 Will it use the LEDs on the micro:bit to show emotions?

 Will it use the smile LEDs on the back to change colors like a chameleon?

 Does your creature like to get close to objects?

 Does it fear getting close to things? How will it react?

BUILD YOUR CREATURE

Use craft materials and recyclables to make your GiggleBot look like an animal. You could add

things such as a tail, arms, legs, ears, and/or a nose. Ensure that the added materials do not cover

the distance sensor or impede the movement of the wheels.

BUILD YOUR PROGRAM

Use what you learned in the Learn section to program your GiggleBot. You can remix the

programs you created earlier or write new ones.

M I S S I O N 4 : A R E Y O U S T U C K ? ? P A G E 1 0

© 2 0 1 9 D E X T E R I N D U S T R I E S

 ARE YOU STUCK??

Let’s build a program together!

Since we already programmed the GiggleBot to run away from obstacles in the Learn section,

now we are going to program the GiggleBot animal to “attack” obstacles.

 Move a “forever” block and “if then … else …”

block onto the workspace.

 Next, put an “obstacle is closer than __ mm”

block in to the space that says true.

 Change closer to farther.

Now we need to decide what the GiggleBot animal

will do if an obstacle is farther than the distance

you decided on, or if there’s no obstacle at all.

 Do you want it to drive around slowly? Quickly?

 Display a smile? Display a grimace?

Place the appropriate blocks for your choices after

then. Or look at the example for inspiration.

M I S S I O N 4 : A R E Y O U S T U C K ? ? P A G E 1 1

© 2 0 1 9 D E X T E R I N D U S T R I E S

Next, we will choose what the GiggleBot will do

when an object is detected less than 50 mm away.

Instead of having the GiggleBot fear obstacles, this

one will “attack” them gleefully. What blocks could

you place after else to tell the GiggleBot to “attack”

the object? An example is shown here.

 Name your project

 Download your file

 Transfer it to the GiggleBot.

 Congratulations! You just created a creature that seeks out obstacles and then attacks
them!

M I S S I O N 4 : T R Y I T O U T P A G E 1 2

© 2 0 1 9 D E X T E R I N D U S T R I E S

 TRY IT OUT
Run your program to see if your GiggleBot avoids or attacks obstacles. If not, you may need to

adjust the speed at which the GiggleBot moves and/or the distance(s) at which it reacts.

ITERATE

 Did your GiggleBot avoid (or attack) obstacles as you anticipated?

 Do you see any areas that you would like to modify or improve upon? In engineering, we try a

solution, think about what needs to change, and we iterate.

 As you modify and revise your program, save each new program with a version number –

you never know when you might want to take another look at an older version (for example:

Distance_V1 where “V” stands for version).

M I S S I O N 4 : T R Y I T O U T P A G E 1 3

© 2 0 1 9 D E X T E R I N D U S T R I E S

EXTENSION

Think about what you learned in the previous three missions. Find a way to add in use (or more

use) of the onboard LEDs to your program. Or, utilize the pins on the GiggleBot to further control

the robotic animal.

GIVE ME A SIGN
Build the program below and transfer it to your GiggleBot.

 display graph of __ with a max of __ is found under

Lights

 distance to obstacle is found under GiggleBot → more.

 Change the max value

 Place your hand in front of the distance sensor and then move it away. What happens?

 Vary the distance between your hand and the distance sensor

 What happens if you change the maximum value?

 What could this program be used for?

 Can you think of ways to integrate this into your existing code?

M I S S I O N 4 : T R Y I T O U T P A G E 1 4

© 2 0 1 9 D E X T E R I N D U S T R I E S

Copyright Dexter Industries 2019. All rights reserved. Reproduction and distribution of

the Mission without written permission of Dexter Industries is prohibited. GiggleBot is a

registered Trademark of Dexter Industries.

Contact dextered@dexterindustries.com for permissions and questions.

mailto:dextered@dexterindustries.com

