

SECURBOT
MISSION 10

TABLE OF CONTENTS

• SECURE-BOT ... 1

Your Role: Security Guard .. 1

Your Task: Defend a Treasure ... 1

Considerations .. 1

Materials .. 1

• LEARN: RADIO .. 2

Program the GiggleBot .. 2

Program the Additional Micro:Bit ... 6

Test It Out ... 7

• PLAN IT OUT... 8

Security Robot Features.. 8

Programming ... 8

Build Your Robot Guard ... 10

Build Your Program ... 11

• ARE YOU STUCK?? ... 12

Work Plan ... 13

Build Your Security Robot .. 14

Program the GiggleBot .. 14

Program the Additional Micro:Bit .. 24

• TRY IT OUT! .. 32

Iterate .. 32

Challenge .. 33

M I S S I O N 1 0 : S E C U R E - B O T P A G E 1

© 2 0 1 9 D E X T E R I N D U S T R I E S

 SECURE-BOT

YOUR ROLE: SECURITY GUARD

 A security guard is a person employed to protect something specific from a variety of
hazards.

YOUR TASK: DEFEND A TREASURE

You have been put in charge of keeping a treasure safe. You must not let anyone get to the treasure.

To do this you will create a security robot. If the location of the treasure is compromised, the robot

will send a signal to another micro:bit to warn of the intrusion. You will also utilize your skills and

materials from previous missions to add other methods for deterring the intruder

CONSIDERATIONS

What will your GiggleBot be in charge of protecting? Your room? A slice of cake in the refrigerator?

Your favorite toy hidden in a cabinet? Your clothes in the closet?

MATERIALS

 GiggleBot and good batteries

 Micro:bit and provided cable

 Laptop / computer

 Distance sensor and sensor mount

 Servo(s) and some means to secure them

 Pipe cleaners

 Scissors

 Alligator clips

 Speaker

 Additional micro:bit

 Craft supplies or recycleables such as construction paper, cardboard, and tape

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 2

© 2 0 1 9 D E X T E R I N D U S T R I E S

 LEARN: RADIO

In mission 8, we learned how to use an additional micro:bit to control the GiggleBot using radio

signals. In this mission, we will be sending signals from the GiggleBot to the additional micro:bit as

well as messages from the additional micro:bit back to the GiggleBot. This will be like an alert or

notification on your phone, except it will be on a micro:bit. We will need to program both the

GiggleBot and the additional micro:bit. Look for the icon to identify code that goes on the

GiggleBot and for the icon for code that goes onto the additional micro:bit.

 PROGRAM THE GIGGLEBOT

We are going to create a program for the GiggleBot to send

a message whenever the light level in the room has

changed. For this program we will use the light sensor on

the micro:bit that is attached to the GiggleBot. There are also

light sensors on the GiggleBot, but we will not use them for

now. However, you may want to use them in your own security robot program.

Let’s program the GiggleBot to detect if the light level has changed from dark to light. If the light

level changes, it will send a message to the additional micro:bit.

 Start a new project, and name the project “guardian”.

 We need to set the radio group. Put a radio set group __ block

(found under Radio) inside of a on start block to set the radio group

for your GiggleBot.

 Remember, if there are multiple groups of GiggleBots and additional micro:bits being
programmed, each set will need a different radio group number (unless you want several
GiggleBots to communicate with one another).

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 3

© 2 0 1 9 D E X T E R I N D U S T R I E S

 DISPLAY LIGHT LEVEL

Now, move a forever block onto your workspace. Then, add a

show number __ block to the forever loop. Instead of showing just

one number, move a light level block into the forever loop.

You can find the light level block under Input:

The GiggleBot will display the light value as seen by its own micro:bit. Play with the light level

around the GiggleBot: use a blanket to create a shadow, or bring it close to a light source. Verify

that the displayed number does change accordingly.

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 4

© 2 0 1 9 D E X T E R I N D U S T R I E S

 REACT TO CHANGE IN LIGHT LEVEL
Now, we will program the GiggleBot to react to a change in light level.

 Add an if __ then __block to the forever loop. This block can be found under

Logic.

Attach a 0 < 0 block to the if part of the if __ then __ block, thus replacing

the true word. This block can also be found under Logic.

 In the comparison block, add a light level block, replacing the first 0.

 Change the comparison sign and value to your desired light level. The micro:bit light sensor

reads 0 as complete darkness and 255 as maximum brightness.

Now, you need to decide what message you will send to the additional micro:bit when the light level

changes.

 Attach a radio send string __ block to the then __ portion of the if __ then __ block. Inside of

the quotation marks write a message to appear on the additional micro:bit when the light levels

around the GiggleBot change.

In this example, the additional

micro:bit will display the text “Lights

on” when the light level around the

GiggleBot changes from dark to

light.

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 5

© 2 0 1 9 D E X T E R I N D U S T R I E S

 TAKE ORDERS FROM ADDITIONAL MICRO:BIT
Last, we will add on code so that the additional micro:bit can communicate with the GiggleBot as

well. For this program the additional micro:bit is going to send a 2 to the GiggleBot when the light

level changes from dark to light. You can change this number, but it will need to match the value

sent by the additional micro:bit.

 Move an on radio received receivedNumber block to the

workspace. This block can be found under Radio.

 Inside this block we will tell the GiggleBot what to do when it

receives a number from the additional micro:bit

Put an if __ then __ block inside the

on radio received receivedNumber block.

 Attach a 0 = 0 block to the if __ portion of the if __ then __ block.

 Inside of this block place a receivedNumber block (found

under Variables) in the first place for a value.

receivedNumber is a variable that will change value based

on what number is sent by the additional micro:bit.

 Now, we will tell the GiggleBot what to do when it receives

a 2 from the additional micro:bit. Since turning on lights

may mean an intruder has entered the room, let’s tell the

GiggleBot to display a red smile. The blocks to control the

lights on the GiggleBot can be found under Lights.

Download and transfer this program to the GiggleBot.

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 6

© 2 0 1 9 D E X T E R I N D U S T R I E S

 PROGRAM THE ADDITIONAL MICRO:BIT

Now we need to program the additional micro:bit to receive

messages from the GiggleBot.

 Start a new project in Makecode. Name it “alarm”.

First, we need to set the radio group to match that of the

GiggleBot. Remember, if there are other people

programming micro:bits and GiggleBots nearby, each

person/group needs to use a different radio group.

 Put a radio set group 1 block (found under Radio) inside of a on start

block to set the radio group for your GiggleBot. Change the group if needed.

 RESPONDING TO MESSAGES RECEIVED FROM GIGGLEBOT
 Next, move an on radio received receivedString block onto your

workspace. Inside this block we will tell the additional micro:bit

what to do when it receives a message from the GiggleBot.

For this program we will tell the additional micro:bit to display the message sent by the GiggleBot.

 Move a show string ___ block inside of the

on radio received receivedString block.

Since we want the additional micro:bit to display whatever message is sent by the GiggleBot, we

will add a variable block to the portion where the message is written.

 Move a receivedString (found under Variables) to the

portion of the show string block, replacing the default

“Hello!” string.

M I S S I O N 1 0 : L E A R N : R A D I O P A G E 7

© 2 0 1 9 D E X T E R I N D U S T R I E S

 SENDING MESSAGES TO GIGGBLEBOT
Last, we will add to the program to allow the additional micro:bit to communicate back to the

GiggleBot.

 Add an on button A pressed block to your workspace.

This will allow you to communicate back to the GiggleBot by pressing

button A on the additional micro:bit.

 Inside of this block attach a radio send 0 block.

 Change the value inside this block to 2 since that is the value we

programmed the GiggleBot to receive.

Download and transfer this project to the additional micro:bit.

TEST IT OUT

Turn off the lights in the room and turn on the GiggleBot and the additional micro:bit.

 What happens when you turn on the lights?

 Did the additional micro:bit display a message that the lights were on?

 What happens when you press the A button on the additional micro:bit? Did the GiggleBot

display a red smile?

Now that you have learned how to program two micro:bits to communicate with one another, you

are ready to create a robotic security guard.!

M I S S I O N 1 0 : P L A N I T O U T P A G E 8

© 2 0 1 9 D E X T E R I N D U S T R I E S

 PLAN IT OUT

SECURITY ROBOT FEATURES

How will you utilize all of the materials from the missions in your security guard robot? Make a list

of the materials and jot down your ideas next to each item.

1 Distance sensor
2 Servo(s)
3 Speaker
4 Light sensor (built in)

 What movements or changes in the environment will the robot be able to detect and react to?

• Change in light level?
• An object getting close to it?
• Being turned upside down?

 What will your robot look like?

• Will it be a dragon with wings that flap?
• A monster with a large mouth full of teeth?
• A spy car equipped with defense mechanisms?

PROGRAMMING

Think about what you want the GiggleBot to react to. Write down what the GiggleBot will do in each

of the situations. This will help you to program the GiggleBot’s reactions as well as the messages

it sends to the other micro:bit.

Create a chart like the one next page with everything that you want the GiggleBot to do and send

alerts about.

 You do not need to incorporate all of the actions in the chart below, but you need to utilize all of

the sensors :

 light sensor
 distance sensor
 gyroscope (detects a change in orientation such as being tilted or turned upside down)
 speaker
 onboard LEDs

M I S S I O N 1 0 : P L A N I T O U T P A G E 9

© 2 0 1 9 D E X T E R I N D U S T R I E S

ACTION G IGGLEBOT
REACTION

MESSAGE TO
MICRO :BIT

RADIO TRANSMISSION
(fill in the number you plan
to use for each)

Room lights turned on

Object detected

(distance sensor)

GiggleBot moved

(gyroscope)

GiggleBot upside

down (gyroscope)

Speaker sound

M I S S I O N 1 0 : P L A N I T O U T P A G E 1 0

© 2 0 1 9 D E X T E R I N D U S T R I E S

BUILD YOUR ROBOT GUARD

Attach the distance sensor, speaker, and servo(s) to your GiggleBot. Add any additional decorations

to make your robot look like the desired type of security guard.

M I S S I O N 1 0 : P L A N I T O U T P A G E 1 1

© 2 0 1 9 D E X T E R I N D U S T R I E S

BUILD YOUR PROGRAM

Use your plan from the chart above to program your GiggleBot security guard. Remember that you

will need to program the micro:bit on the Gigglebot as well as the additional micro:bit. These are

two separate programs.

One program is transferred to the GiggleBot: The other program is transferred to your

additional micro:bit:

Also be sure to plug in the distance sensor to one of the I2C ports and to connect the speaker using

alligator clips.

Look back to previous missions if you need help connecting the distance sensor and speaker.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 2

© 2 0 1 9 D E X T E R I N D U S T R I E S

 ARE YOU STUCK??

Let’s build together! As this is the most complex project so far, it’s been split into smaller parts. Go

through each step, one by one. First, attempt it on your own and if you need help, check the

following pages.

Work Plan ... 13

Build Your Security Robot .. 14

Program the GiggleBot .. 14

Reacting to Changes in its Environment ...15
 A: Turning on the Lights ...15
 B: Detection of an Object (distance sensor) .. 16
 C: Detection of GiggleBot Movement (“on shake”)............................ 17
 D: Reacting to Being Turned Upside Down (On Logo Down) 18
Receiving Signals from the Additional micro:bit ... 20
 E: Alarm Sounding ... 20
 F: Driving Forward in Attack Mode... 21
 G: Stop the GiggleBot ... 22
Final GiggleBot Code .. 23

Program the Additional Micro:Bit .. 24

Reacting to Signals from the GiggleBot ...24
 A: Turning on the Lights .. 25
 B: Detection of an Object (distance sensor) .. 26
 C: Detection of GiggleBot Movement (“on shake”)........................... 27
 D: Reacting to Being Turned Upside Down ..28
Sending Signals to the GiggleBot ... 29
 E: Alarm Souding ... 29
 F: Driving Forward in Attack Mode.. 29
 G: Stop the GiggleBot .. 30
Final Additional Micro:bit Code .. 31

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 3

© 2 0 1 9 D E X T E R I N D U S T R I E S

First, we need to decide what the GiggleBot will do in each of the situations below. Here are some

ideas for each action and reaction. We will use this plan to build a robotic security guard.

WORK PLAN

 ACTION G IGGLEBOT REACTION MESSAGE TO
MICRO :BIT

RADIO TRANSMISSION
(fill in the number you

plan to use for each)

A Room lights turn on LED smile turns red “Lights!”

B Object detected

(distance sensor)

Blink orange /white

smile

“INTRUDER!”

C GiggleBot moved LED Sad Face “Moving!”

D GiggleBot turned upside

down

Servos move arms up

and down

LED ANGRY

FACE

E Additional micro:bit:

Button A pressed

Speaker sound

F Additional micro:bit:

Button B pressed

GiggleBot drives forward

quickly

G Additional micro:bit –

Button A + B pressed

GiggleBot stops

 For a feature to function fully, you will need to code the feature in both the GiggleBot and
the additional micro:bit.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 4

© 2 0 1 9 D E X T E R I N D U S T R I E S

BUILD YOUR SECURITY ROBOT

Gather all of your materials for your GiggleBot security robot. You will need:

 GiggleBot + micro:bit
 Additional micro:bit + battery pack
 Distance sensor and sensor mount
 Speaker
 Alligator clips
 2 servos
 Pipe cleaners to secure the servos and speaker
 Supplies for decoration (if desired)

Attach your distance sensor, speaker, and servos to your GiggleBot. In the example program below

we will program the servos to move arms made of craft supplies. If you are not sure how to connect

something, look back to previous missions for step-by-step directions.

Once your GiggleBot security guard has all of its extra components attached, it is time to program!

 PROGRAM THE GIGGLEBOT

We will write the GiggleBot program. Give it a name so

you will be able to identify and reload it.

First, we will set the radio group.

 Remember, if there are multiple groups of GiggleBots and additional micro:bits being
programmed, each set will need a different radio group number.

 Put a radio set group __ block (found under Radio) inside of a on start block to set the radio

group for your GiggleBot.

Next, we will program the GiggleBot’s reactions to different actions or changes. Each of the

following sections is to be added to the above on start sequence. Your program will grow and grow!

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 5

© 2 0 1 9 D E X T E R I N D U S T R I E S

 REACTING TO CHANGES IN ITS ENVIRONMENT
Steps A to D deal with the GiggleBot reacting to changes in its environment that signal the presence

of an intruder. Messages are going to be sent to the second microbit as alert messages.

 A: TURNING ON THE LIGHTS
The first condition we are looking for is a change in the light level. If the lights are turned on, the

LED smile will turn red and the GiggleBot will send a message to the additional micro:bit. Add this

code to what you already have on your workspace.

 Move a forever block onto your workspace. Place an

if __ then __ block inside of the forever block.

 Attach a 0 < 0 block (found under Logic) to the if __ part of the

if __ then __ block.

 In the comparison block, add a light level (found under Input) block to the first place for a

value. Change the comparison sign and value to your desired light level.

 The micro:bit light sensor reads 0 in complete darkness and 255 as maximum brightness.

We will now attach blocks to the then __ portion of the if __ then __ block to tell the GiggleBot

what to do when this condition is met. Based on the plan above, we need to :

1 connect a display red smile block.

2 send a message to the additional micro:bit.

We will send the message by sending a number to the

additional micro:bit. Later, we will tell the additional micro:bit

what to do when it receives each of the numbers. Connect a

radio send number __ block below the display red smile

block. Change this number to 1. Now your GiggleBot will react

to the lights being turned on!

Transfer your code to the GiggleBot and test it out!

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 6

© 2 0 1 9 D E X T E R I N D U S T R I E S

 B: DETECTION OF AN OBJECT (DISTANCE SENSOR)
We now need another if __ then __ block to program the GiggleBot’s reaction to detecting an object

using the distance sensor. We will follow the same basic process that we used for the light sensor

to program the GiggleBot to react to a change in the distance sensor reading. Add the following to

what you already have in your workspace.

 Place this if __ then __ block underneath the first if __ then __
block for the light sensor readings.
Attach an obstacle is closer than __ mm block (found under
GiggleBot) to the if __ portion of the new if __ then __ block.
Determine what the “normal” value for the distance should be
below.
How close should something be able to get to the GiggleBot before
it reacts? Your value may be different than the one in the example.

In our plan, the GiggleBot’s reaction to a object getting close is to blink an orange smile and send a

signal to the additional micro:bit.

 Insert a radio send number __ block in the then __ part of the
if __ then __ block.

 Change the number to 2, per our plan.

Since we want the GiggleBot to blink an orange and white smile, we will need to use a loop.

 Attach a repeat __ times block to the then __- portion of the
if __ then __ block. You can change the number of times that the
orange smile blinks by changing the number in this block.

 Inside of the repeat loop, connect a display red smile block and
change red to orange.

 After, this block add a pause 100 ms block. Change the value of
this block to tell the GiggleBot how long to wait before changing to
the next color smile.

 Add another display red smile block and change this one to
white.

 Add one more pause 100 ms as well and change the value to match the first one.

Transfer your code and test your program to ensure the reaction to an obstacle works as intended!

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 7

© 2 0 1 9 D E X T E R I N D U S T R I E S

 C: DETECTION OF GIGGLEBOT MOVEMENT (“ON SHAKE”)

Next we will program the robot to react to being moved by using the using the accelorometer on

the GiggleBot's micro:bit. We add to the code we’ve already done.

 Move an on shake event block to your workspace. This block is found under Input.

Inside the on shake event block, connect blocks to tell the GiggleBot what to do if it is shaken. Using

the plan above, the GiggleBot should first send a radio message with the number 3 and then display

a sad face on the GiggleBot micro:bit.

 Connect a send radio number block and change the value to 3.

 Connect a show icon block to the on shake event block.

 Change the icon to a sad face.

The GiggleBot needs to send a signal to the additional micro:bit that it has been picked up or

moved. We will do this by sending another number to the additional micro:bit. Later, we will tell

the additional micro:bit what to do when it receives each of the numbers

Your GiggleBot will now react if it is shaken! Transfer your code and test it out!

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 8

© 2 0 1 9 D E X T E R I N D U S T R I E S

 D: REACTING TO BEING TURNED UPSIDE DOWN (ON LOGO DOWN)
According to our plan, the GiggleBot’s reaction to being upside down is waving its arms. The

GiggleBot will wave the servo-controlled arms 5 times. You can control each servo individually, in

mirror, or in synchro.

 Move another on shake block to the workspace.

 Using the drop-down menu change this to on logo down

 The GiggleBot needs to send a signal to the additional

micro:bit. We will do this by sending the number 4. Later,

we will tell the additional micro:bit what to do when it

receives each of the numbers.

 Connect a repeat 4 times block to the on logo down block.

 Change the repeat value to your desired number of

repetitions.

 Inside of the repeat block, connect a set right servo to 0

block to the on logo down block

 Change right to both in mirror. Then, change the value to

tell the Gigglebot to raise its arms

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 1 9

© 2 0 1 9 D E X T E R I N D U S T R I E S

 Add a pause 100 ms block next.

 Change the value of the pause to tell the GiggleBot how

long to wait before moving the servos again. The lower the

number, the faster the servos will move back and forth.

 Now, connect another set right servo to 0 block.

 Use the drop-down menu to change right to both in mirror.

You may prefer both in synchro.

 Add one last pause 100 ms block.

 Change this value to tell the GiggleBot how long to wait

before moving the servos again

Your GiggleBot will now wave its arms if it is flipped over!

Transfer your code and test it out!

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 0

© 2 0 1 9 D E X T E R I N D U S T R I E S

 RECEIVING SIGNALS FROM THE ADDITIONAL MICRO:BIT
We are done with sending messages to the additional micro:bit to let it know what is happening to

our guardian. Now we will program the GiggleBot to react to signals sent by the additional micro:bit.

That way, we can remote control the GiggleBot and better defend our treasure.

 E: ALARM SOUNDING
According to our plan, if button A is pressed on the additional micro:bit, the speaker attached to the

GiggleBot will make a sound.

 Move an on radio received receivedNumber block into your

workspace. Inside of this block we will tell the GiggleBot what to do

whenever the additional micro:bit sends a number

 Connect an if true then __ inside of the on radio received

event block.

According to out plan, the GiggleBot will react to button presses on the

additional micro:bit via a number sent by the additional micro:bit. The

number 5 corresponded to the GiggleBot playing a sound through the speaker.

 Attach a 0 = 0 block (found under Logic) to the if

portion of the if __ then __ block, replacing the true section.

 Inside of this block place a receivedNumber block

(found under Variables) over the first 0. Change the second value in the 0 = 0 block to 5 since

that is what was assigned to this action in the plan above.

 There are lots of options for what sound or music you can

play when the GiggleBot recieves this signal from the

additional micro:bit. Click on Music to see all of the options.

Select the start melody dadadum repeating once block and

then choose which melody to play using the drop-down menu.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 1

© 2 0 1 9 D E X T E R I N D U S T R I E S

 F: DRIVING FORWARD IN ATTACK MODE
When the additional micro:bit sends the signal to attack (the radio message with number 6), the

GiggleBot will drive forward as quickly as it can.

 Connect another if true then __ block inside of the

on radio received block.

 Attach a 0 = 0 block to the if __ portion of the new

if __ then __ block.

 Inside of this block place a receivedNumber block

(found under Variables) in the first place for a value.

This is a variable that will change value based on what

number is sent by the additional micro:bit.

 Change the second value in the 0 = 0 block to 6 since

that is what was assigned to this action in the plan

above.

 Attach movement blocks to the then __- portion of the

if __ then __ block.

 Connect a set both motors speed to slowest block.

 Change slowest to fastest using the dropdown menu.

 Underneath the set speed block, attach a

drive forward block. This tells the GiggleBot to drive

forward forever (or until it is told to stop).

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 2

© 2 0 1 9 D E X T E R I N D U S T R I E S

 G: STOP THE GIGGLEBOT
Almost done! Since the GiggleBot is going forward for an unspecified amount of time, we need to

be able to stop it.

 Add one last if true then __ block inside of the

on radio received block.

In the plan, the number 7 meant stopping the GiggleBot.

 Connect a 0 = 0 block to the if portion of the new

if __ then __ block, replacing the true placeholder.

 Inside of this block place a receivedNumber block

(found under Variables) in the first place for a value,

like we did twice already.

 Change the second value in the 0 = 0 block to 7

according to the plan above.

 Finally, connect a stop block to the then __ portion of

the if __ then __ block.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 3

© 2 0 1 9 D E X T E R I N D U S T R I E S

 FINAL GIGGLEBOT CODE
Whew! That was a lot of programming! Here it is in all its glory!

 Give a name to your program if you haven’t done so already.

 Download and transfer this program to your GiggleBot.

 Clear the workspace on MakeCode to write a new program for the additional micro:bit.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 4

© 2 0 1 9 D E X T E R I N D U S T R I E S

 PROGRAM THE ADDITIONAL MICRO:BIT

We will start this program the same way we started the program

for the GiggleBot. First, we will set the radio group. Make sure this

radio group matches the GiggleBot’s radio group.

 Put a radio set group __ block (found under Radio) inside of a on start

event block to set the radio group for your GiggleBot.

 REACTING TO SIGNALS FROM THE GIGGLEBOT
Keep the on start sequence on your workspace and add the following sequences to the workspace.

 Move an on radio received receivedNumber block into your

workspace.

Inside of this block we will tell the GiggleBot what to do whenever the GiggleBot sends a number

to it using many if __ then __ blocks.

We will refer to our plan in order to keep track of what number means which action. Keep your
plan at hand.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 5

© 2 0 1 9 D E X T E R I N D U S T R I E S

 A: TURNING ON THE LIGHTS
When the GiggleBot detects light, it sends out a radio message with the number 1. The additional

micro:bit needs to react when it receives that message, and let us know it has received it.

 Connect an if true then __ block inside of the

on radio received receivedNumber event block.

In the plan, the GiggleBot sends a 1 when it detects a change in light level (dark to light).

 Attach a 0 = 0 block to the if __ portion of the if

__ then __ block.

 Place a receivedNumber block in the first place for a

value and change the second value to 1.

 The number 1 corresponds to the light level changing from dark to light in the GiggleBot’s

environment

 Attach a show string __ (found under Basic)

 Change the string to “Lights!” or whatever message you

want it to display.

 And here’s a neat little trick that will simplify our work as we are going to need an if-then
statement for each of the sent numbers

 To expedite this process, right-click on the if __ then __

block and select Duplicate.

 Connect the duplicated blocks to the previous

if __ then __ block.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 6

© 2 0 1 9 D E X T E R I N D U S T R I E S

 B: DETECTION OF AN OBJECT (DISTANCE SENSOR)
According to the plan, when the GiggleBot detects an object it sends out a radio message with the

number 2. The additional micro:bit has to let us know what is happening. We need to code it to react

to the number 2.

 Duplicate the if __ then __ block as shown on the

previous page, if you haven’t done so already.

 Change the second if statement so that it checks for

the number 2

 Change the show string __ statement to say

“INTRUDER!”

 This corresponds to the detection of an object near the

GiggleBot.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 7

© 2 0 1 9 D E X T E R I N D U S T R I E S

 C: DETECTION OF GIGGLEBOT MOVEMENT (“ON SHAKE”)
Based on the plan, when the GiggleBot detects it is being shaken, it sends out a message with the

number 3. The additional micro:bit needs to react to the number 3 and let us know what is

happening with the GiggleBot.

 Right click on the if-then block once again, duplicate it.

 Attach it to the second if-then block.

 Change receivedNumber = 2 to receivedNumber = 3

 Change the word to MOVING .

This corresponds to the GiggleBot being shaken.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 8

© 2 0 1 9 D E X T E R I N D U S T R I E S

 D: REACTING TO BEING TURNED UPSIDE DOWN
When the GiggleBot gets turned upside down, it sends out a radio message with the number 4. We

need to code the additional micro:bit to display a message whenever the GiggleBot finds itself

upside down.

 Right click on the if-then block once again,

duplicate it.

 Attach it below the third if-then block.

 Change the number 3 to a 4. This is what

the GiggleBot sends when it’s turned

upside down.

 Get rid of the show string block

 Insert a show icon block (found under

Basic)

 Change the icon to the angry face icon.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 2 9

© 2 0 1 9 D E X T E R I N D U S T R I E S

 SENDING SIGNALS TO THE GIGGLEBOT
We have finished handling the messages sent by the GiggleBot. Next, we will use some of the inputs

on the additional micro:bit to send signals back to the GiggleBot.

 E: ALARM SOUDING
We programmed the GiggleBot to play a sound on the speaker already when it receives a radio

message with the number 5. Now we need to program the additional micro:bit to send that

message. Keep the code you’ve already done in your workspace and add the following.

 Move an on button A pressed block to your workspace

The only other block we need to put inside this block is one to send

the number 5 to the GiggleBot

 Move a radio send number __ block

 Change the number to 5.

 F: DRIVING FORWARD IN ATTACK MODE

 Right-click on the block and duplicate it, just like we did earlier.

You will notice that this block shows up grayed out. That is because

we have already programmed the additional micro:bit to do

something when button A is pressed.

 Use the drop-down menu to change the button to B

 Change the number being sent to 6. This triggers the code on the

GiggleBot to drive forward.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 3 0

© 2 0 1 9 D E X T E R I N D U S T R I E S

 G: STOP THE GIGGLEBOT

Pressing both buttons (A+B) will send a radio message with the number 7, which we have already

coded on the GiggleBot side. The GiggleBot will stop when it receives this message.

 Right-click on either of the

on button pressed blocks and

duplicate it once again.

 Change it to on button A + B pressed.

 Change the number to 7.

M I S S I O N 1 0 : A R E Y O U S T U C K ? ? P A G E 3 1

© 2 0 1 9 D E X T E R I N D U S T R I E S

 FINAL ADDITIONAL MICRO:BIT CODE
Here is the whole program for the additional micro:bit! Pretty impressive! High Fives all around!

Transfer it to the additional micro:bit and test it out with the

GiggleBot!

You can add even more inputs to send messages back to the

GiggleBot. Experiment with using other input blocks for the

additional micro:bit such as on shake, logo up (normal position

for the GiggleBot), screen up, screen down, tilt left, and tilt

right.

 Remember: If you add more inputs and signals sent back to the GiggleBot, you will need to
go back and modify the GiggleBot program to include those received numbers as well.

M I S S I O N 1 0 : T R Y I T O U T ! P A G E 3 2

© 2 0 1 9 D E X T E R I N D U S T R I E S

 TRY IT OUT!
After all of that hard work it is time to do some testing! Place your GiggleBot security guard in a

dark place, away from objects. Turn on the GiggleBot and connect the battery pack to your

additional micro:bit. You are now ready to test all of the GiggleBot’s new security features!

 Turn on the lights

 Get close to it

 Shake it

 Turn it over

 Press the buttons on the additional micro:bit (no need to mash the buttons!)

 Try it all!

ITERATE

 Did your GiggleBot perform well as a security guard?

• What areas that you would like to modify or improve upon?

• In engineering, we try a solution, think about what needs to change, and we iterate.

 What other security features do you want your GiggleBot to have?

• Think about all of the things you learned about through the previous missions.

• Could you use more of the sensors on the GiggleBot and micro:bit?

M I S S I O N 1 0 : T R Y I T O U T ! P A G E 3 3

© 2 0 1 9 D E X T E R I N D U S T R I E S

Did you use the light sensors on the GiggleBot or just the light sensor on the micro:bit?

Look at the Input blocks. Did you use all of the inputs?

As you modify and revise your program, save each

new program with a version number – you never

know when you might want to take another look at

an older version (for example: Guard_V1 and

Remote_V1 where “V” stands for version).

CHALLENGE

Now that you have designed and built a guardian robot to protect your valuables, it is time to figure

out how to make it even better. First, you must find the weaknesses.

 Set up your guardian robot and try to defeat the security measures.

 Can you move the object you are protecting WITHOUT the GiggleBot guardian noticing?

 Can you turn on lights WITHOUT the GiggleBot guardian noticing?

 Can you move the GiggleBot without it sending a warning to the additional micro:bit?

Now that you have found the weaknesses, edit your program so that it cannot be defeated again.

M I S S I O N 1 0 : T R Y I T O U T ! P A G E 3 4

© 2 0 1 9 D E X T E R I N D U S T R I E S

Copyright Dexter Industries 2019. All rights reserved. Reproduction and distribution of

the Mission without written permission of Dexter Industries is prohibited. GiggleBot is a

registered Trademark of Dexter Industries.

Contact dextered@dexterindustries.com for permissions and questions.

mailto:dextered@dexterindustries.com

